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Abstract
Surface air temperature is an important factor for human quality of life and is a key marker of global climate change. Under-
standing multidecadal changes in surface air temperature, and accurately predicting future trends, are therefore important for 
economic development. In this work, we explore multidecadal variability in East Asian surface air temperature (EASAT). We 
find that EASAT shows a strong multidecadal variability between 1900 and 2017. Observational analysis shows that annual 
EASAT multidecadal variability is highly associated with the North Atlantic oscillation (NAO) and the NAO leads detrended 
annual EASAT by 15–20 years. Further analysis illustrates that the NAO precedes annual EASAT multidecadal variability 
through its leading effect on the Atlantic Multidecadal oscillation (AMO). The AMO influences annual EASAT multidecadal 
variability through the Africa–Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model is therefore 
established to predict annual EASAT. The model is able to better hindcast annual EASAT based on different periods of 
the time-series. Due to the joint influences of NAO multidecadal variability and the forcing associated with anthropogenic 
greenhouse gas emissions, annual EASAT for 2018–2034 is predicted to remain at its current level or even slightly lower, 
followed by a period of fast warming over the following decades.

Keywords  East Asian surface air temperature · North Atlantic oscillation · Atlantic multidecadal oscillation · Africa–Asia 
multidecadal teleconnection pattern

1  Introduction

East Asia (20°–40°N, 90°–120°E) is a highly populated area 
and one of major agricultural, industrial and economic cent-
ers of the world. To the west of East Asia lies the world’s 
highest plateau, the Tibet Plateau, and to the east the Pacific 
Ocean, the largest ocean in the world. The climate system 
in East Asia is complex and it plays an important role in 
global climate change (Zhang and Liu 1992; Zhou et al. 

2004). Multidecadal climate change, particularly multidec-
adal temperature change, is closely related to the long-term 
economic and social development of a region and to the 
lives of its population (Yoshino 1978; Robeson et al. 2014; 
Lin and Franzke 2015; Stolpe et al. 2017). Recognizing the 
mechanisms behind multidecadal temperature change and 
effectively predicting temperature change over the coming 
decades provides an important reference for governments to 
formulate a strategy for tackling climate change (Stolpe et al. 
2017). The Intergovernmental Panel on Climate Change 
(IPCC) has made multidecadal climate change and its pre-
diction one of the core elements of its assessment report 
(Taylor et al. 2012), and the IPCC AR5 (Fifth Assessment 
Report) also attaches importance to research on and predic-
tion of multidecadal trends (Stocker et al. 2014).

As in many other regions of the world, annual East Asian 
surface air temperature (EASAT) increased markedly during 
the twentieth century and shows characteristics of multidec-
adal change (Levitus et al. 2001; Ding et al. 2007; Luo and 
Li 2014). Unlike the continuously rapid warming of EASAT 
between 1985 and 2005, over recent years the areal-averaged 
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annual EASAT is not obviously increased, perhaps indica-
tive of a warming hiatus (Fig. 1a). This feature warrants 
further investigation. The impact of natural climate phenom-
ena such as the Atlantic Multidecadal oscillation (AMO) 
(Luo and Li 2014; Kucharski et al. 2016; Stolpe et al. 2017; 
Sun et al. 2018; Li et al. 2018a), the Atlantic meridional 
overturning circulation (AMOC) (Sun et al. 2012; Stolpe 
et al. 2018), the Pacific Decadal oscillation (PDO) (Liu 
et al. 2006; Luo and Li 2014; Stolpe et al. 2017), the El 
Niño–Southern oscillation (ENSO) (Bradley et al. 1987; Hu 
et al. 2012), and the Indian Ocean Dipole (IOD) (Guan and 
Yamagata 2003; Zhao et al. 2014), together with the impact 
of human activities (Hua et al. 2008; Li et al. 2016, 2018b) 
such as the heat island effect, the effect of greenhouse gas 
emissions, and the impact of aerosols on climate change 
within East Asia has been investigated in previous studies. 
However, the mechanism of EASAT multidecadal variability 
has not been fully understood.

Future changes to East Asian temperatures have been 
explored using climate model simulations (Ding et al. 2007; 

Wang and Chen 2014; Yang et al. 2017) and theoretical 
model prediction (Luo and Li 2014). Surface air temperature 
(SAT) consistently shows a warming trend under different 
CO2 emission scenarios for different regions in East Asia, 
but with rates differing between climate models (Wang and 
Chen 2014; Yang et al. 2017). However, few climate models 
are able to simulate the recent warming hiatus over East 
Asia (Meehl et al. 2014; Meehl and Teng 2014). According 
to the statistical relationship between annual EASAT multi-
decadal internal variability and the sea surface temperature 
(SST) mode, Luo and Li (2014) developed an extrapolation 
approach to predicting annual EASAT based on the AMO’s 
quasiperiodicity. However, as changes to the SST mode in 
the future may not be completely regular, use of the inter-
decadal SST mode to predict annual EASAT has limitations 
(Luo and Li 2014). Therefore, to explore future changes in 
annual EASAT, a new model is needed.

The North Atlantic oscillation (NAO) is the dominant 
mode of atmospheric variability over the North Atlantic 
region (Walker 1924; Wallace and Gutzler 1981; Hurrell 
1995; Li and Wang 2003; Sun et al. 2015; Wang et al. 2017) 
and fluctuates on timescales ranging from interannual to 
multidecadal (Luterbacher et al. 1999; Polyakov and Johnson 
2000; Wanner et al. 2001). The study of the NAO is a key 
target of the International Climate Variability and Predict-
ability Program (CLIVAR) (WCRP 2018). Based on analysis 
of the atmospheric circulation in the Northern Hemisphere, 
it has been found that the NAO is not only a regional phe-
nomenon (Li and Wang 2003; Hurrell 1996; Hurrell et al. 
2003; Li et al. 2013; Yu et al. 2016). The NAO can affect the 
climate system over East Asia via teleconnections and anom-
alous stationary waves (Chen et al. 2005; Li and Ruan 2018) 
through two branches (Hoskins 1993; Zuo et al. 2015): the 
northern branch, oriented along the subpolar waveguide 
(Chen et al. 2005; Gong et al. 2001; Wu and Wang 2002), 
and the southern branch of the wave train, which propagates 
from the North Atlantic southeastward into Europe and the 
Arabian Gulf via the Asian jet waveguide (Zuo et al. 2015; 
Bueh et al. 2011). However, these studies are more focused 
on the synoptic timescale, and there are few studies on multi-
decadal temperature changes over East Asia affected by the 
NAO. Based on observational analysis, Li et al. (2013) 
showed that the NAO leads Northern Hemisphere mean sur-
face temperature by 15–20 years, and therefore concluded 
that the NAO is a predictor of Northern Hemisphere mean 
surface temperature (Li et al. 2013). These results provide 
an incentive for studying the effects of the NAO on multi-
decadal variations in annual EASAT.

In this paper, we explore the relationship between the 
NAO and annual EASAT on the multidecadal scale using 
observations and theoretical analysis. We find that NAO has 
a leading effect on the annual EASAT on the multidecadal 
scale and is a predictor of the annual EASAT. An AMO 

Fig. 1   Time series of annual EASAT anomalies, and power spec-
trum. a Areal-averaged annual EASAT anomalies (bars) for the 
period 1900–2017, based on the HadCRUT4 dataset and relative to 
the base period 1961–1990. The solid green line is annual EASAT 
anomalies after Gaussian low-pass filtering. b Power spectrum of 
annual EASAT anomalies for the period 1900–2017. The blue and 
red dashed lines show the 95% confidence level and the reference red 
noise spectrum, respectively
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bridge mechanism is identified to explain that by which the 
NAO affects multidecadal variability in the annual EASAT. 
An NAO-based linear model is therefore established to pre-
dict annual EASAT. We have performed hindcast on this 
model to test the uncertainty of the model. Finally, annual 
EASAT for 2018–2034 is predicted.

2 � Data and methodology

2.1 � Data

The NAO index (NAOI) was calculated from NCAR SLP 
(National Center for Atmospheric Research Sea Level Pres-
sure) observational data (Trenberth and Paolino 1980) at a 
horizontal (latitude–longitude) resolution of 5° × 5° for the 
period 1899–2017, obtained from the US National Center 
for Environmental Prediction. In addition, we used Had-
SLP2 (Hadley Centre Sea Level Pressure dataset 2) (Allan 
and Ansell 2006) at a resolution of 5° × 5° from the UK 
Met Office Hadley Center and the Climatic Research Unit 
at the University of East Anglia, which covers the period 
1850–2017. As the results of this study were not sensitive 
to the choice of dataset for sea level pressure, we show only 
results obtained using NCAR SLP data. SAT observational 
data include observations from 160 stations in China cov-
ering 1951–2017 and the China SAT 0.5° × 0.5° gridded 
dataset (V2.0) for 1961–2017; HadCRUT4 (version 4 of the 
Institute of Climate of the University of East Anglia, UK) 
data (Morice et al. 2012), which combine land and sea sur-
face temperature datasets from the UK Met Office Hadley 
Center and the Climatic Research Unit at the University of 
East Anglia, at a horizontal resolution of 5° × 5° and cover-
ing the period 1850–2017; and GISTEMP (GISS Surface 
Temperature) (Hansen et al. 2010) covering 1880–2017 
from NASA’s Goddard Institute for Space Studies (GISS). 
In exploring the relationship between the NAO and annual 
EASAT, comparing results obtained using these datasets, 
noting that the results are not sensitive to the choice of 
dataset, we have only shown results obtained using Had-
CRUT4 data. In terms of the mechanism of annual EASAT 
change, the lack of HadCRUT4 data for central North Africa 
mans that we used the High Precision Surface Climate Data 
Set (CRU TS 4.01) (University of East Anglia Climatic 
Research Unit 2017) of the University of East Anglia Insti-
tute of Climatology at a horizontal resolution of 0.5° × 0.5° 
for 1901–2016. For wind and geopotential height data we 
used Twentieth Century Reanalysis Version 2 (20CRv2) 
data (Compo et al. 2011) from the US National Oceanic 
and Atmospheric Administration (NOAA), which are at a 
resolution of 2° × 2° and covering the period 1871–2012.

Based on data availability, the historical simulations 
data from 40 Atmosphere–Ocean General Circulation 

Models (ACCESS1-0, ACCESS1-3, BCC-CSM1-1, BCC-
CSM1-1-m, BNU-ESM, CanESM2, CCSM4, CESM1-BG, 
CESM1-CAM5, CESM1-FASTCHEM, CESM1-WACCM, 
CMCC-CESM, CMCC-CM, CMCC-CMS, CNRM-CM5, 
CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, FGOALS-s2, 
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, 
GISS-E2-R, HadCM3, HadGEM2-ES, INM-CM4, IPSL-
CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC-
ESM, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR, 
MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, MRI-ESM1, 
NorESM1-M, NorESM1-ME) that participated in CMIP5 
were used to further verify the relationship between NAO 
and EASAT. Monthly output for the period 1900–2005 
from historical simulations based upon the first realization 
(r1i1p1) of all models (except EC-EARTH, for which r7i1p1 
is used due to data availability) is considered.

2.2 � Statistical method

In this paper, NAOI is defined as the difference between 
the normalized zonal mean sea level pressure in the region 
between the middle latitudes (35°N) and the high latitudes 
(65°N) of the North Atlantic (80°W–30°E) (Li and Wang 
2003). Both in observations (Hilmer and Jung 2000) and 
in some model future projections (Hu and Wu 2004), the 
active centers of NAO have spatial shift. Such shift may 
influence the NAOI definition. In view of this, this defini-
tion has been compared to another definition based on the 
principal component (PC) time series of the leading empiri-
cal orthogonal function decomposition (EOF) of annual sea 
surface pressure (SLP) anomalies over the Atlantic sec-
tor (20°–80°N, 90°W–40°E) (Hurrell 1995; Hurrell et al. 
2003). The results are not sensitive to the choice of NAOI 
definition, therefore we have only shown results based on 
the definition of Li and Wang (2003). Annual EASAT is 
defined as the area-weighted mean SAT of the East Asia 
region (20°–40°N, 90°–120°E). The AMO index is defined 
as the area-weighted mean SST anomaly of the North Atlan-
tic (0°–60°N, 7.5°–75°W). In exploring the multidecadal 
teleconnection with the Asian jet stream, the Africa–Asia 
multidecadal teleconnection (AAMT) index is defined as 
follows:

where V*
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effective degrees of freedom. In the case of significance tests 
for the correlation coefficient between two variables with 
high autocorrelation, especially for time series after low-pass 
filtering, the number of degrees of freedom for the sample 
is taken as the number of effective degrees of freedom. The 
number of effective degrees of freedom (Neff) is calculated 
as follows (Pyper and Peterman 1998; Li et al. 2013):

where N is the sample size and �XX(j) and �YY (j) are the 
autocorrelations of two sampled time series X and Y at time 
lag j , respectively.

This study employs statistical methods, including power 
spectrum analysis, Gaussian low-pass filtering, correlation 
analysis, and linear regression, which are not described in 
detail here.

3 � Multidecadal variations in annual EASAT 
and relationship to NAO

Since the beginning of the twentieth century, annual EASAT 
has shown a trend of warming with fluctuations and multi-
decadal variations, similar to the change in global tempera-
ture. Annual EASAT was in a cold phase during 1900–1930 
and 1953–1987, and in a warm phase during 1930–1953 and 
from 1990 to the present day derived from the HadCRUT4 
data (Fig. 1a). Annual EASAT showed a trend of fluctuating 
warming between 1900 and around 1945. Annual EASAT 
reached a maximum around 1945, and since then has shown 
a gradual cooling, although with fluctuations. From 1955 
to around 1990, annual EASAT remained relatively stable 
with only small fluctuations. From 1990 until 2010, there 
was a clear trend of rapid and fluctuating warming, rising at 
a rate of 0.2 °C every 10 years, which is higher than the rate 
of global ground-based temperature increase over the same 
period (Hansen et al. 2006). From 2010 to recent years, the 
annual EASAT was not obviously increased. This multidec-
adal feature is clearly demonstrated using continuous power 
spectrum analysis (Fig. 1b). Observed annual EASAT shows 
a significant spectral peak at a period of ~ 70 years. In addi-
tion, there are peaks over quasi-decadal scales at ~ 7 years 
and interannual scales at ~ 4 years. The statistical signifi-
cance of the multidecadal variation should be interpreted 
carefully, as the analysis period covers only one and a half 
cycles of annual EASAT. Nevertheless, a multidecadal vari-
ability of 50–70 years has been reported in several stud-
ies based on observed and reconstructed annual EASAT 
time series (Gao et al. 2015). The reason for the change in 
annual EASAT may be external forcing due to anthropogenic 

1

Neff
≈

1

N
+

2

N

N
∑

j=1

N − j

N
�XX(j)�YY (j),

factors such as increased emission greenhouse gases (includ-
ing carbon dioxide), while multidecadal fluctuations may 
reflect a change in internal variability.

Both NAOI and annual EASAT anomalies show multi-
decadal variability, with NAOI generally leading the phase 
of annual EASAT by 10–20 years, where NAOI derived 
from NCAR SLP data (Fig. 2a). From 1900, NAOI increased 
to its maximum value, before decreasing below zero until 
it reached its minimum value, before increasing gradu-
ally. According to this behavior, the index has a period of 
50–70 years, consistent with previous studies (e.g., Schles-
inger 1994). NAOI was in a clear positive phase between 
roughly 1900 and 1935, and between 1970 and 2005, and in 
its negative phase between roughly 1935 and 1970. Annual 
EASAT also shows obvious characteristics of multidecadal 
variability. Annual EASAT gradually increased from the 
start of the twentieth century, peaking around 1943, before 
falling to its lowest value between 1970 and 1980, and then 
gradually increasing. Between 2005 and 2010, it reached its 
maximum value, before dropping slightly in recent years. 
Annual EASAT was in a positive phase between 1900 and 
1955 and from 1995 to present day, and in a negative phase 

Fig. 2   EASAT, NAOI, and their lead–lag correlation. a Detrended 
annual EASAT anomalies (red line) and NAOI (blue line) from 1900 
to 2017 after Gaussian low-pass filtering. b Lead–lag correlation 
between annual mean NAOI and detrended annual EASAT anoma-
lies (1900–2017). The red (blue) line is for the annual mean (Gauss-
ian low-pass filtered) time series. Negative (positive) lags mean that 
the NAOI leads (lags) detrended annual EASAT, and the red (blue) 
dashed lines denote the 98% confidence levels for unfiltered (filtered) 
time series using the effective number of degrees of freedom
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between 1955 and 1995. The change in annual EASAT is 
in good agreement with the change in NAOI, with a lead-
ing period of 10–20 years. These results suggest that annual 
mean NAOI precedes annual EASAT, and therefore that 
NAOI can be implicated as a predictor of multidecadal vari-
ability in annual EASAT.

To further explore the relationship between NAO and 
annual EASAT, we assess the lead–lag correlation between 
annual mean NAOI and detrended annual EASAT (Fig. 2b). 
For the unfiltered time series, the correlation coefficient 
reaches a maximum value of 0.45 (significant above the 
98% confidence level) when NAOI leads detrended annual 
EASAT by around 15–17 years. For the filtered time series, 
the correlation coefficient reaches its maximum value of 
0.91 (significant above the 98% confidence level) when 
NAOI leads annual EASAT by 17 years. This result illus-
trates that NAO potentially has a sizeable impact on SAT 
over East Asia and may be a predictor of multidecadal vari-
ability in annual EASAT. Meanwhile, this relationship con-
sistent among different SLP datasets such as HadSLP2 (not 
shown). Thus, these results further suggest that the observed 
NAO–EASAT connection is robust.

For East Asia, Gaussian low-pass filtered NAOI with a 
lead time of 17 years correlates well with SAT based on 
Gaussian low-pass filtered HadCRUT4 data (Fig.  3a). 
Almost the entire region has a lead correlation coefficient 
exceeding 0.6, with the value exceeding 0.8 for many areas 
and passing the 98% significance level (t test). Results are 
similar using SAT data from 160 Chinese stations or China’s 
SAT 0.5° × 0.5° gridded dataset. This further illustrates that 
multidecadal variability in annual EASAT is related to the 
NAO.

4 � Mechanism by which NAO influences 
multidecadal variability in annual EASAT

It remains unclear how the NAO affects annual EASAT with 
a phase lag of 17 years. Sun et al. (2015, 2017) proposed 
the NAO delay oscillator model and the cold-season North 
Africa–East Asia teleconnection (Sun et al. 2015, 2017). 
We found that multidecadal teleconnections exist not only 
in the cold season but throughout the whole year. In view of 
the great thermal capacity and thermal inertia of the ocean 
(Hunt and Wells 1979; Thompson and Schneider 1979; 
Cess and Goldenberg 1981; Sun et al. 2017) and the exist-
ence of the teleconnection, we propose that the NAO affects 
annual EASAT by storing signals in the ocean. Firstly, the 
NAO drives deep ocean convection through anomalous 
turbulent heat fluxes, which in turn affect the AMOC. The 
AMOC gives rise to AMO-type SST anomalies (Sun et al. 
2015, 2017; Stolpe et al. 2018). Then, the AMO affects 

annual EASAT through the westerly waves of the Northern 
Hemisphere.

The NAO has a large impact on North Atlantic SST (Peng 
2002; Slonosky and Yiou 2002; Scaife et al. 2005; Sun et al. 
2015). There is a strong correlation between the NAO and 
SST variability in the North Atlantic when the NAO leads 
by 17 years (Fig. 3b); the correlation coefficient exceeds 0.6 
over most of the ocean, and exceeds 0.8 in many regions 
(significant above the 95% confidence level). This corre-
lation arises because the NAO stores signals in the North 
Atlantic Ocean by acting on the AMOC and then affects the 
SST of the North Atlantic, with the AMO reflecting the SST 
variability in this region. This process takes 15–20 years (Li 
et al. 2013).

It can be seen that AMO index and EASAT almost 
reached the maximum lead–lag correlation in the same 

Fig. 3   Lead correlation between NAO, SAT, and SST. a Lead corre-
lation between annual NAOI during 1900–2000 and detrended annual 
SAT over East Asia during 1917–2017 based on Gaussian low-pass 
filtered data. The dotted area denotes correlations significant above 
the 95% confidence level. The blue box indicates the East Asian 
region considered in this study (20°‒40°N, 90°‒120°E). b As in (a) 
but for SST anomalies over the North Atlantic
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period, with a correlation coefficient is 0.81 (Fig. 4a). The 
lead–lag correlation between AMO index and EASAT 
(Fig.  4b) based on the multimodel ensemble mean 
(MME) of 17 CMIP5 historical simulations (ACCESS1-0, 
ACCESS1-3, BCC-CSM1-1-m, CanESM2, CCSM4, 
CESM1-CAM5, CMCC-CM, CMCC-CMS, GFDL-CM3, 
GFDL-ESM2G, HadGEM2-ES, IPSL-CM5A-MR, IPSL-
CM5B-LR, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3, 
and MRI-ESM1) that can better simulate the relationship 
between AMO and EASAT, reproducing a significant maxi-
mum correlation coefficient (0.96) when the AMO index 
and the EASAT in in-phase, further verify the link between 
AMO and EASAT.

The AMO index is strongly correlated with the land 
SAT of regions adjacent to the Mediterranean Sea, the Ara-
bian Peninsula, and the East Asian region, all of which lie 
between 30°W to 150°E and 10°N to 50°N (Fig. 5). Areas 
of highest correlation seem to be clustered around 30°N; 
e.g., northwestern North Africa, Northern Arabia, and East 
Asia. These three large centers coincide with the westerly 
wave train. Similar results are obtained using different data-
sets in place of CRU TS 4.01 (not shown). Therefore, we 
conclude that the AMO affects SAT in East Asia via the 
westerly wave train.

The regression method was used to decompose the 
meridional wind anomaly at 300 hPa in Eurasia (0–60°N, 
30°W–150°E). Figure 6a shows the spatial pattern of the 
Gaussian low-pass filtered V300 anomalies across the Eura-
sian continent. The spatial pattern is characterized by a zonal 
wave structure with alternate centers of southerly and north-
erly anomalies extending from the northwest coast of Africa 
to East Asia. In North Africa–East Asia between 20°N and 
40°N, two positive and three negative centers appear along 
the 30°N latitude circle, corresponding to a dimension of 
about 5–6 wavenumbers, as Sun et al. (2017) calculated 

Fig. 4   Lead–lag correlation between AMO and EASAT derived from 
observations as well as MME. a Lead–lag correlation between annual 
mean AMO index and detrended annual EASAT anomalies (1900–
2017). The red (blue) line is for the annual mean (Gaussian low-pass 
filtered) time series. Negative (positive) lags mean that the AMO 
index leads (lags) EASAT, and the red (blue) dashed lines denote the 
90% confidence levels for unfiltered (filtered) time series using the 
effective number of degrees of freedom. b As in (a) but derived from 
the MME of 17 CMIP5 historical simulations covering the period 
1900–2005

Fig. 5   Correlation map between the Gaussian low-pass filtered annual time series of land SAT and the AMO index between 1901 and 2016. The 
dotted area denotes correlations significant at the 95% confidence level using the effective number of degrees of freedom
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using the Rossby wave ray tracing theory in a horizontally 
nonuniform background flow (Li and Li 2012; Li et al. 2015; 
Zhao et al. 2015, 2018) in the area from the northwest coast 
of Africa to East Asia. This shows that the AMO affects 
EASAT through westerly waves.

To investigate the vertical structure of the AAMT pat-
tern, we calculated the latitudinal averages of meridional 
wind and geopotential height at 25°–35°N regressed onto 
the AAMT index over decadal timescales (Fig. 6b). The 
meridional wind anomalies associated with the AAMT 
show equivalent barotropic structure in the troposphere 
with maxima located in the upper troposphere. The geo-
potential height field shows three centers of maximum pos-
itive anomalies in the upper troposphere extending from 

the northwest coast of Africa to East Asia, with minimum 
anomalies in between. These positive height anomalies 
tend to intensify the climatological ridge over Europe 
but weaken the East Asian trough. The locations of the 
maxima and minima of the regressed geopotential height 
anomalies correspond to the zero-value contours of the 
meridional wind anomalies and are consistent with the 
geostrophic wind relationship. This shows that the AAMT 
has a clear vertical structure.

Based on these findings, we propose the NAO first 
stores signals in the North Atlantic and then influences 
annual EASAT on the multidecadal scale via the AAMT, 
which is a very important path that NAO affects EASAT.

Fig. 6   V300 and geopotential height anomalies regressed onto the 
AAMT index. a Spatial pattern of the Gaussian low-pass filtered 
annual V300 anomalies over the Eurasian continent (0°–60°N, 
60°W–150°E) from 1900 to 2012. The pattern is displayed as V300 
(m·s−1) regressions onto the normalized annual AAMT index. Dots 
indicate regressions significant above the 99% confidence level using 

the effective number of degrees of freedom. b Annual meridional 
wind (contours, m·s−1) and geopotential height anomalies (shading, 
m) at 25°–35°N regressed onto the normalized annual AAMT index 
at decadal timescales from 1900 to 2012. Dots indicate the regres-
sions for height are significant above the 95% level, using the effec-
tive number of degrees of freedom
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5 � Multidecadal prediction of annual EASAT

This lead–lag relationship of the NAO and annual EASAT 
(i.e., with a phase lag of 17 years) offers a simple but useful 
way to predict annual EASAT around a decade and half in 
advance. A NAO-based linear model for predicting decadal 
annual EASAT is therefore established as follows:

where t is time in years and the coefficients a, b, and c are 
determined empirically by linear regression based on the 
data over the historical period, so that the root mean square 
error of the results from the model and the observations is 
minimized.

To test the performance of the model, we performed many 
hindcast experiments. The empirical model used for each 
hindcast was constructed with only knowledge of the train-
ing data before the hindcast period. For example, to hindcast 
the multidecadal change in the annual EASAT from 2008 
to 2024, we constructed model only based on the historical 
data from 1900 to 2007, in which the parameters a, b, and c 
are 0.64, 0.010, −19.44, respectively. Similarity, to hindcast 

EASAT(t) = aNAO(t-17) + bt+ c,

the change from 2009 to 2025, we constructed model only 
based on the historical data from 1900 to 2008, in which 
the parameters a, b, and c are 0.63, 0.010, −19.27, respec-
tively. These parameters have slight differences between 
two models constructed based on different periods, but 
these parameters are quite stable in many hindcast experi-
ments. Some hindcast examples are given in Fig. 7. Such 
as in Fig. 7a, we set up the model based on historical data 
from 1900 to 1985, and predicted the multidecadal change 
in the annual EASAT from 1986 to 2002. Compared with 
the observed annual EASAT, the hindcast annual EASAT 
are similar and all in the allowed uncertainty range. Same as 
in Fig. 7b–d, only based on different period of 1900–1990, 
1900–1995 and 1900–2000, to hindcast the annual EASAT 
of 1991–2007, 1996–2012 and 2001–2017, high correlations 
and relatively small root mean square errors between the 
hindcast and observed annual EASAT are obtained for each 
set of hindcast experiments. Therefore, the model can be 
used to accurately simulate the multidecadal variation in 
annual EASAT.

We constructed a model of multidecadal variability in 
annual EASAT based on data for NAOI (1900–2000) and 

Fig. 7   Observed, modeled, and hindcasted EASAT. a Observed 
annual EASAT (red) after Gaussian low-pass filtering for 1917 to 
2002, model predicted annual EASAT (blue) for 1917 to 1985, and 
hindcasted annual EASAT (black) for 1986–2002. The shaded areas 
show the 2-sigma uncertainty range of the model predicted and hind-

casted values. b–d As in (a) but for Observed annual EASAT for 
1917 to 2007, 2012 and 2017, model predicted annual EASAT for 
1917 to 1990, 1995 and 2000, and hindcasted annual EASAT for 
1991–2007, 1996–2012 and 2001–2017
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annual EASAT (1917–2017). Time series for annual EASAT 
obtained from observations and from the model predictions 
are compared in Fig. 8. Gaussian low-pass filtered observed 
annual EASAT shows a gradual increase from 1917, peak-
ing around 1945. It then decreases slightly and remains 
steady until 1980 when it begins to gradually increase at 
a rate exceeding 0.3 °C every 10 years, before entering a 
warming hiatus around 2010. The model predicted annual 
EASAT anomaly also rose gradually from 1917, peaking just 
before 1940, and remained generally steady before entering 
a period of pronounced warming. In recent years, annual 
EASAT shows a warming hiatus, in good agreement with 
observations. The model successfully predicts the two local 
maxima of annual EASAT around 1940 and 2010, simulates 
the temperature trends during 1917–1940 and 1980–2010, 
and predicts the relatively stable annual EASAT between 
1940 and 1980. The warming hiatus in annual EASAT over 
recent years is also well simulated. Observed values are gen-
erally within the range of the uncertainty of the model.

Next, we set up the model based on historical data from 
1900 to 2017 and predicted the multidecadal change in the 
annual EASAT from 2018 to 2034 (Fig. 8). The annual 
EASAT will remain steady at its current level or even 
slightly lower in coming years due to the weakening of the 
previous NAO if the external force changes little, and there-
after continues to fast warm based on recent NAO decadal 
strengthening.

6 � Summary and discussion

We used HadCRUT4 surface temperature data to explore the 
relationship between annual EASAT and the NAO. Annual 
EASAT and NAOI show clear multidecadal variations. On 

the multidecadal scale, the phase change of NAOI leads 
changes in EASAT by 10–20 years. The highest lead–lag 
correlation for NAOI and EASAT is obtained when NAOI 
leads EASAT by 17 years; this value is significant above the 
98% confidence level (two-tailed t test). We therefore con-
clude that a link exists between NAO and annual EASAT.

Based on the NAO delay oscillator model (Sun et al. 
2015, 2017), and considering the great thermal capacity and 
thermal inertia of the ocean, we propose that the ocean acts 
as a “bridge” through which the NAO affects annual EASAT. 
Firstly, NAO drives deep ocean convection through anoma-
lous turbulent heat fluxes, which in turn affect AMOC. The 
AMO then gives rise to AMO-type SST anomalies that affect 
annual EASAT via the westerly waves of the Northern Hem-
isphere. A clear relationship exists between NAO and SST 
variability in the AMO region. When the NAO leads SST 
variability by 17 years, there is a large, significant lead–lag 
correlation between SST and NAOI throughout almost the 
entire AMO region. To explore the effect of AMO on annual 
EASAT, we assessed the relationship between the AMO and 
surface temperature in the North Africa–East Asia region, 
revealing that the AMO has a strong correlation with SAT 
in Northwestern Africa, the Arabian Peninsula, and East 
Asia. To study the mechanisms involved, we explored the 
African–Asian multidecadal teleconnection AAMT in the 
North Africa–East Asia region. The regression method was 
used to decompose the meridional wind anomaly at 300 hPa 
in Eurasia. Its spatial pattern presents a zonal wave structure 
with the center extending from Northwest Africa to East 
Asia. Between 20°N and 40°N, along the 30°N latitude cir-
cle, there are two positive and three negative centers in the 
area from the northwest coast of Africa to East Asia. Based 
on the regression coefficients obtained from the geopoten-
tial height anomalies and the meridional wind anomalies 
regressed onto the AAMT index, the AAMT is also evi-
dent in the vertical direction, confirming the presence of 
the AAMT and the viability of the proposed mechanism 
by which NAO affects annual EASAT through the “bridge” 
effect of the AMO. These above corresponding arguments 
indicate that the chain of NAO–AMO–AAMT–EASAT is a 
very important path that NAO affects EASAT.

A multidecadal model of annual EASAT was constructed 
and used to obtain hindcasts. The predictions were in good 
agreement with observational data. High correlations and 
relatively small root mean square errors between the hind-
cast and observed annual EASAT are obtained for each set of 
hindcast experiments, indicating that the model can be used 
to accurately simulate the multidecadal variation in annual 
EASAT. Finally, based on this linear model, we predicted 
multidecadal variations in annual EASAT over the next dec-
ade and conclude that annual EASAT will remain at current 
values or even slightly lower due to the weakening of the 
previous NAO in the case of little change in external forcing, 

Fig. 8   Observed, modeled, and predicted EASAT. Observed annual 
EASAT (red) after Gaussian low-pass filtering for 1917–2017, model 
predicted annual EASAT (blue) for 1917–2017, and predicted annual 
EASAT (green) for 2018–2034. The shaded areas show the 2-sigma 
uncertainty range of the model predicted values
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before resuming an upward trend over the following 10 years 
based on recent NAO decadal strengthening.

It is worth noting that this work only discussed the rela-
tionship between NAO and EASAT based on two cycles of 
data. These can be further verified based on paleoclimate 
proxy and climate model integration in the future. Also, 
some previous studies (Si et al. 2016; Yun and Timmermann 
2018) have also suggested that as a quasi-white noise pro-
cess, atmosphere itself varies at various time scales. There-
fore, the mechanism of EASAT change might be further 
improved in the future. Furthermore, the model developed to 
predict annual EASAT does not consider the possible impact 
of volcanic eruptions and solar activity. In future work, we 
will further develop the prediction model, and improve its 
multidecadal prediction skill and apply it to more studies.
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